- 1 Differences in the use of surface water resources by desert birds is revealed using isotopic
- 2 tracers
- 3 Ben Smit^{1,6*}
- 4 Stephan Woodborne^{2,3}
- 5 Blair O. Wolf⁴
- 6 Andrew E. McKechnie^{1,5}
- 7
- ¹DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and
- 9 Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
- 10 ² iThemba LABS, Private Bag11, WITS 2050, South Africa
- ³ Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria,
- 12 Private Bag X20, Hatfield 0028, South Africa
- ⁴ UNM Biology Department, University of New Mexico, MSC03-2020, Albuquerque, NM
- 14 87131-0001, USA
- ⁵ South African Research Chair in Conservation Physiology, National Zoological Garden, South
- 16 African National Biodiversity Institute, P.O. Box 754, Pretoria 0001, South Africa
- ⁶*Current address*: Department of Zoology and Entomology, Rhodes University, P.O. Box 94,
- 18 Grahamstown 6140, South Africa
- 19
- 20

21

22 ABSTRACT

23 The scarcity of free-standing water sources is a key determinant of animal and plant community 24 structure in arid environments, and an understanding of the extent to which particular species use 25 surface water is vital for modelling the effects of climate change on desert avifauna. We investigated interspecific variation in the use of artificial water sources among birds in the 26 27 Kalahari Desert, South Africa, by 1) observations at waterholes and 2) tracing spatial water-use 28 patterns during summer by isotopically-labelled water sources and blood sampling. More than 29 50% of the avian community (primarily insectivores and omnivores) were not observed to drink. 30 The majority (53%) of species drinking at waterholes were granivorous, and their use of surface 31 water was best predicted by their relative abundance in the community. Species representing the 32 remaining dietary guilds drank significantly more on hot days. Blood samples revealed that only 33 11 of 42 species (mostly granivores and a few omnivores) showed evidence of drinking at a 34 waterhole with enriched deuterium values; on average, in the latter birds, water from the 35 enriched waterhole accounted for ~38% of their body water pool. These findings illustrate that 36 two methods employed in this study provide different, but complementary data on the relative 37 importance of a water source for an avian community. Although our results suggest that most 38 avian species are independent of surface water, drinking patterns on the hottest days during our 39 study period suggest that free-standing water might become more important for some of the non-40 drinking species under hotter climatic conditions.

41 Keywords: water balance, stable isotopes, drinking behaviors

43 **INTRODUCTION**

Small animals have limited capacities to store body water and consequently need to regulate 44 water intake over time scales of minutes to hours, particularly in hot, arid terrestrial 45 46 environments where high environmental temperatures and high vapor pressure deficits result in 47 rapid evaporative water loss (Hill et al. 2004). Daily water demands are particularly high in small endotherms such as birds, because of their high mass-specific metabolic and evaporative water 48 49 loss (EWL) rates (Wolf 2000, Williams and Tieleman 2005); for example, in small desert birds 50 daily water fluxes may exceed 50% of body mass (Webster and Weathers 2000). 51 Birds gain water through metabolic water (i.e., oxidative water), drinking, and/or water 52 rich food sources (i.e., preformed water) (Bartholomew and Cade 1963, MacMillen 1990). Although metabolic water production can sometimes balance total water losses at air 53 54 temperatures $(T_{air}) < 25$ °C, birds need to supplement intake by drinking surface water or eating 55 water-rich foods at higher $T_{\rm air}$ when rates of EWL exceed rates of metabolic water production 56 (MacMillen 1990, MacMillen and Baudinette 1993, Williams 1999, 2001). Species relying on food with low water content (e.g., dry seeds) generally need to drink daily in hot, arid habitats 57 58 (Bartholomew and Cade 1963, Cade and Maclean 1967, MacMillen 1990, Berry et al. 2001). 59 Moreover, daily drinkers must sometimes allocate time to visit water sources that are distant 60 from their foraging grounds and nesting sites. During daily trips to water, birds potentially incur 61 costs related to metabolic heat production while flying (Aulie 1971, Hudson and Bernstein 1981, 62 Engel et al. 2006a), and increased water requirements because EWL is elevated when flying during hot weather (Tucker 1968, Torre-Bueno 1978, Engel et al. 2006b). An additional cost is 63 64 related to predation risk, which is often very high around isolated water sources on account of 65 greater concentrations of predators (Cade 1965, Fisher et al. 1972, Rosenstock et al. 1999).

66 Birds that feed on diets with high water content (e.g. carnivores, insectivores and frugivores) can obtain most, if not all, of their required water intake while foraging (Wolf and 67 Martinez del Rio 2000, Wolf et al. 2002). By being independent of surface water, species can 68 69 therefore occupy habitats where surface water is unavailable (e.g. sandy deserts). However, one 70 potential disadvantage of this mode of water acquisition is that foraging efficiency could greatly 71 affect hydration state. If these birds experience reduced foraging efficiency on hot days, they are 72 likely to face hydration bottlenecks when evaporative water loss demands exceed water intake 73 (du Plessis et al. 2012; Smit and McKechnie 2015). Several studies of arid-zone birds have 74 revealed that during hot weather individuals do not maintain body mass, despite maintaining foraging efforts during hot periods of the day, and the authors linked these patterns to high water 75 76 efflux rates and increased evaporative cooling demands (du Plessis et al. 2012, Smit and 77 McKechnie 2015, van de Ven 2017).

78 In many arid environments, fresh water sources are scarce and unpredictable and the 79 availability of water-rich foods such as fruits and insects is generally low and/or restricted to 80 only short seasons (Wolf and Martinez del Rio 2000, 2003). Artificial water sources are often 81 provided by conservation managers or livestock farmers for large mammals, and may represent 82 the only drinking water sources in many areas. Although artificial water sources may be 83 beneficial to terrestrial organisms, including birds (McKechnie et al. 2012, Abdu et al. 2018) and 84 large mammals (Hayward and Hayward 2012) under hot conditions, it has been shown that the 85 presence of these artificial sources can greatly contribute to habitat degradation (Dean and Macdonald 1994, Jeltsch et al. 1997, Landman et al. 2012). An improved understanding of the 86 87 dependence of terrestrial communities on freestanding water sources, and how this changes 88 under hot conditions, is needed to inform conservation management decisions about the

5

availability of artificial water sources. For example, Kearney et al. (2016) modelled thermal heat
load and EWL rates in the endangered Night Parrot (*Pezoporus occidentalis*), and showed that
reliance on drinking surface water will increase under climate warming scenarios.

92 The Kalahari Desert of southern Africa provides an ideal model system for testing 93 predictions about the use of artificial surface water by birds. Environmental temperatures in the 94 Kalahari during the summer are high and surface water sources scarce (even during high rainfall 95 periods), and yet the region supports a diverse avian community. Previous studies in the southern African arid zone have demonstrated how the avian communities are strongly shaped by water 96 97 resources (Simmons et al. 2002), and that some resident birds (e.g. sandgrouse, *Pterocles* spp.) will cover large distances to drink water daily at isolated water sources, and even transport water 98 99 to their young, (e.g. Pterocles species) (Willoughby and Cade 1967, Cade and Maclean 1967). 100 Yet, many other resident species in these deserts do not appear to make use of surface water 101 sources (Serventy 1971, Maclean 1996). Quantifying surface water use has traditionally required 102 many hours of observations to record birds drinking at surface water sources, in addition to 103 determining the background avian community composition. In this study, we quantify 104 interspecific variation in use of surface water in an arid-zone bird community using both direct 105 observations of birds at waterholes and an isotopic labelling approach (Rosenstock et al. 1999, 106 Hyde 2011). We propose that these two methods provide complementary insights into the use of 107 surface water. We predicted that species whose diets are characterized by low water content 108 (granivores) are more reliant on free-standing water sources compared to insectivores, frugivores 109 and nectarivores. We also predicted that birds increase their use of free-standing water during hot 110 and/or dry weather.

112 METHODS AND MATERIALS

113 Study Site

We examined interspecific variation in drinking dependence within a Kalahari Desert bird 114 115 community at Tswalu Kalahari Reserve (TKR; ~1100 m a.s.l. 27.197°S, 22.439°E), Northern Cape Province, South Africa during the austral summers of 2009/2010 and 2011/2012. TKR 116 117 consists of approximately 100,000 ha of semi-arid Kalahari savanna on vegetated red sand 118 dunes. Mean annual rainfall over a 30-year period at TKR was 295 ± 172 mm (coefficient of 119 variation, CV = 58.3%) (unpublished data, Tswalu Kalahari Reserve). With the exception of 120 seasonal dams at the foothills of the Koranna Mountain range (1400-1600 m a.s.l., forming the 121 eastern border of TKR), and a few isolated calcareous pans, no natural surface water occurs in 122 the dune habitat (even during the rainy season). Artificial waterholes have been established 123 throughout the reserve (generally more than 4 km apart), primarily to supply drinking water to 124 large ungulates.

125 We assessed avian surface water use using two methods: first, by monitoring drinking 126 patterns at four artificial waterholes directly, and second, by investigating the importance of 127 surface water by enriching a waterhole with a stable isotope label and then sampling body water 128 of the bird community at distances of 0–2.5 km from the labelled water source. Many previous 129 studies have investigated the potential benefits of artificial water developments to desert avian 130 communities using direct observations (Smyth and Coulombe 1971, Williams and Koenig 1980, 131 Broyles 1995, Brien et al. 2006, Lynn et al. 2006, 2008; Simpson et al. 2011, Lee et al. 2017, Abdu et al. 2018). However, whereas direct observations provide qualitative data on which 132 species drink and their drinking frequency, isotopic data provide quantitative insights into the 133 134 importance of a water source to individuals' body water pools [see (Hyde 2011)].

135

136 Weather Data

Air temperature data were obtained every 10 min during the study period using a portable weather station (Vantage Pro2, Davis Instruments, Hayward, CA), set 2 m above the ground at a central location in the study site. This weather station had an aspirator fan to ensure air movement over the temperature and humidity sensors. We checked the factory calibration of the weather station against a mercury thermometer (resolution 0.1 °C, accuracy traceable to the South African Bureau of Standards) at a range of temperatures (5 to 50 °C).

143

144 **Observations of Drinking Patterns**

145 Avian drinking patterns were assessed using video cameras (Sony Handycam, DCR-SR45E, 146 Sony Corporation, Tokyo, Japan) to record behavior continuously from sunrise to sunset during mid-summer (November to December 2009), at four waterholes in TKR. All four waterholes 147 148 were in the dunes, each > 3 km away from its nearest neighbor and artificially maintained by 149 reservoirs supplied with groundwater. All waterholes were fully exposed to the sun and the 150 nearest vegetation was > 5 m away. We placed video cameras in custom-made rain- and baboon-151 proof steel boxes next to waterholes or in nearby trees. Video cameras were positioned to cover 152 the maximum area over the waterhole to ensure birds would be visible when drinking at any edge 153 of the water. Recordings commenced between dawn and sunrise, i.e. 0500 and 0600 hours (UTC 154 + 2 hr), respectively (variation due to the 45-min travel time between the first and fourth 155 cameras). The cameras were set to record continuously throughout the day, and in most cases 156 batteries lasted until sunset. We downloaded video footage and recharged batteries on days

157 following recordings and therefore video recordings were repeated on alternate days. We 158 obtained video recordings over a total of 9, 13, 13 and 16 days at the four waterholes, 159 respectively (~ 660 hr of video recordings). We subsequently viewed play-backs of each 160 waterhole's recording during a focal period of 10min, at 30-min intervals (i.e. two 10 min focal 161 periods per hr per waterhole). We recorded species and estimated the number of individuals 162 utilizing the waterhole during each focal period. An independent assessment of numbers of individual birds per species drinking was not feasible and therefore we report statistics on 163 164 presence/absence of drinking per species instead. From the recordings we generated a data set 165 where we computed the presence or absence (as a binomial response) of individual species 166 drinking at each waterhole over four consecutive focal periods (hereafter *drinking int*). We further compared *drinking_int* at one waterhole obtained from sub-sampled video footage (18 x 167 168 10 min intervals) with continuous observations (video or manual) at one waterhole for an entire 169 day, and found that only two species (generally rare species) were missed during interval counts 170 compared to a full day of observation. To quantify the composition of bird species drinking at 171 waterholes relative to the background avian community composition at TKR (hereafter referred 172 to as relative abundance), we conducted 62 point counts along eight transects radiating up to 2.5 173 km of the four waterholes (see supplementary materials, Table S1). Point counts were on 174 approximately 500 m apart and ranged from the habitat surrounding a waterhole up to 4 km from 175 the nearest water source. During each point count (lasting 10 minutes), we identified and 176 recorded all species seen or heard within a radius of ~ 200 m. We assumed that detectability did 177 not vary with distance from the observer (as typically happens in more closed habitats such as 178 forests (Reynolds et al. 1980). This assumption was reasonable at TKR because of the open 179 nature of the habitat.

180

181 Water Resource Use Inferred from Stable Isotope Label

182 The relationship between ratios of stable isotope ratios of hydrogen and oxygen, namely δ^2 H and

183 δ^{18} O, measured in precipitation is typically described by the local meteorological water line

184 (LMWL) (Craig 1961, Turner 1987, Tyler 2011). The δ^2 H and δ^{18} O of body water of organisms

185 vary collinearly—depending on the organisms' prime water source (McCluney and Sabo 2010). 186 Where organisms obtain water from the environment (ultimately from precipitation) it is 187 necessary to account for water fractionation at each trophic transition (Hobson 1999, Wolf and 188 Hatch 2011): for example the leaves of plants lose water through transpiration and many 189 herbivorous invertebrates ingest water with δ^2 H and δ^{18} O values that deviate from the LMWL

because of theses evaporative process in leaves (see Brooks et al. 2009). Insects also lose water evaporatively and so insectivorous birds assimilate water with an additive evaporative enrichment of both vegetation and insects, and so they will have a greater evaporative deviation from the LMWL. The kinetics of evaporation yield a linear relationship between δ^2 H and δ^{18} O

194 that differs from the LMWL (Brooks et al. 2009). The intersection between the linear δ^2 H vs.

195 δ^{18} O relationships for evaporated water (in plants and animals), and precipitation water 196 (originating from a point along the LMWL) is an indication of the water source before 197 evaporation (Gibson et al. 2008). Therefore δ^{2} H and δ^{18} O of body water of organisms (at the 198 community level) will also vary collinearly—depending on whether the organisms obtain water

directly or indirectly from precipitation (McCluney and Sabo 2010). We define this "community 199 level" relationship of $\delta^2 H$ and $\delta^{18} O$ in body water" as a physiological evaporative water line 200 201 (PEWL). We made use of these principles to quantify water resource use of the bird community 202 in the Kalahari Desert where natural surface water is extremely rare, but surface water obtained from groundwater is provided in artificial waterholes to serve livestock and wildlife. The \mathcal{S}^{H} 203 and δ^{18} O values of ground water are typically depleted compared to precipitation and we expect 204 these values to be slightly evaporated and lie along the lower end of the LMWL. Birds that drink 205 provisioned water regularly should show δ^2 H and δ^{18} O values close to that of groundwater. For 206 the remainder of the community, we expect $\delta^2 H$ and $\delta^{18} O$ values to fall close to the LMWL if 207 they obtain water directly from precipitation, or along the PEWL if they obtained water 208 209 indirectly by feeding on other organisms.

The mode of water intake at individual level may be difficult to establish if an organism obtains water from a mixed resource base. Water resource use can be more directly assessed if the hydrogen or oxygen isotope ratios of a prominent surface water source is enriched above natural levels (McKechnie 2004, McKechnie et al. 2004). The presence of enriched isotope ratios in the body water pool of an individual can then be used to infer the percentage of an animal's body water pool derived from a particular water source, thereby giving a quantitative estimate of dependence on a free-standing water source (McCluney and Sabo 2010).

217 We collected blood samples from birds trapped (1) within 2 km of a non-enriched 218 waterhole, and (2) within 2.5 km of a waterhole where we artificially enriched δ^2 H levels

11

219 (enrichment process described below). Blood samples obtained from the bird community before 220 artificial enrichment allowed us to estimate the PEWL from background \mathscr{E} H and \mathscr{E} ¹⁸O values of

body water.

222 We used mist nets (10 per trapping site) and spring traps baited with tenebrionid larvae to 223 trap birds. Trapping sites around focal waterholes were selected along a radius from the 224 waterhole in a direction devoid of waterholes/surface water sources for at least 6 km. We 225 selected trapping sites starting at the first shrubs and trees from waterhole (10 m) at intervals of 226 ~500 m to a distance of 2 km (non-enriched waterhole) or 2.5 km (enriched). Although we had 227 no way to verify *in situ* that birds trapped used the waterholes we studied, the latter site was the 228 furthest we could trap from the enriched waterhole without being nearer to neighboring 229 waterholes. Most waterholes in the 100 000 ha section of the reserve where we caught birds 230 receive water from one or two boreholes at the foothills of the Koranna range. We therefore 231 expected low variation in background levels of all species obtaining water from non-enriched 232 waterholes. Trapping started two days following enrichment and we spent at least one day at 233 each trapping site and carried out 132 trapping hours (80 during February and 52 during October 234 2011), trapping a total of 333 birds (196 and 137 in February and October, respectively). We trapped birds during the morning, from 0600 hours (sunrise) until about 1100 hours, and in the 235 236 afternoon (depending on temperature) from 1500 hours till 1900 hours (sunset). We obtained 237 blood from each bird shortly after capture, or held trapped birds in cotton bags suspended in full 238 shade until they could be processed. No birds were held for longer than 3 hours.

We obtained blood samples (10-150µl) by brachial venipuncture, using a sterile 27-gauge hypodermic needle and heparinized microcapillary tubes. We transferred each blood sample immediately to a 150-µl micropipette and flame-sealed both ends of the pipette (Speakman

242 1997). We stored the blood samples at 2-5 °C in a domestic refrigerator prior to further analyses. 243 We separated pure water from the blood samples by cryogenic vacuum distillation, and measured δ^{4} H and δ^{4} O of the water samples obtained from bird blood and waterholes, using a PAL 244 autosampler and DLT-100 liquid water isotope analyzer (Los Gatos Research, Mountain View, 245 246 CA, USA). Samples were bracketed with laboratory standards referenced against Vienna 247 Standard Mean Ocean Water samples (VSMOW, an international water standard produced by the International Atomic Energy Agency) for δ^2 H and δ^{18} O, and calibrated enriched standards 248 spanning the ranges of -79 to 978 $\%_{VSMOW}$ (\mathscr{E} H) and -11.54 to 260.82 $\%_{VSMOW}$ (\mathscr{E}^{18} O). A 249 250 minimum of ten $1-\mu L$ replicates were analyzed per sample or standard, and values for the first five replicates were typically discarded in order to avoid isotopic memory effects. 251 252 In total, we obtained 68 samples (17 species) during the non-enrichment sampling 253 periods, and 247 species during the enrichment sampling period (for samples per species see 254 Supplementary material Table S1). All experimental procedures were approved by the University 255 of Pretoria's Animal Use and Care Committee (clearance #EC058-09), permits for animal 256 sample collection were obtained from Department of Environment and Nature Conservation 257 (permit #FAUNA 721/2010). 258

259 *Enriching the waterhole*

We enriched the Donderkamp waterhole at TKR from February 21, to March 6, 2011, and again from October 21, to November 3, 2011, following Hyde (2011) by enriching the stable hydrogen isotope ratio (δ^2 H). We chose Donderkamp waterhole as it was a fairly isolated surface water

13

source (> 5 km from nearest neighboring water source) in our study area within TKR. The 263 264 waterhole system consisted of a shallow (~20 cm depth) waterhole with a diameter of 3 m, with 265 water supplied by a ~ 22,800-L reservoir (diameter = 4.3 m, depth = 1.57 m). Although large 266 mammals frequently made use of the water source, we estimated that the reservoir took more 267 than four weeks to run completely dry when the input of freshwater was closed. We therefore 268 emptied the reservoir to approximately 14,000 L (1 m deep) and closed the main inlet to prevent 269 the labelled water from being diluted by inflow ground water. We then added 585 mL of 99.99 270 ‰ deuterium oxide to the reservoir, estimated to enrich the waterhole by 200-300 ‰_{VSMOW} 271 above background levels, and stirred the water for at least two minutes. We then emptied the 272 shallow waterhole to allow labelled water from the reservoir to enter the waterhole. We collected 273 water samples before the experimental enrichment and subsequently every 1-2 days for two 274 weeks after enrichment. The enriched levels showed no trends during each two week enrichment period, and we also confirmed that the δ^2 H and δ^{18} O returned to "normal" groundwater levels 275 276 between the two enrichments periods (seven months).

During February 2011 (wet season) we enriched the δ^2 H levels in Donderkamp waterhole from -41.7 ‰_{VSMOW} to 254 ‰_{VSMOW} (mean of values obtained over 14 days after enrichment,). During October 2011 (dry season) we enriched the δ^2 H levels in Donderkamp waterhole from -31.7 ‰_{VSMOW} to 238 ‰_{VSMOW}. During both sampling periods there were no trends in δ^2 H levels at the waterhole over the 14 days blood sampling period, providing us with a reliable 'background drinking water" estimate.).

283 Data Analyses

284 *Observations*

285 We only included species in the behavioral analyses if they were observed more than three times during community relative abundance surveys, and observed on more than three occasions at one 286 of the waterholes (Supplementary material Table S1). We fitted generalized mixed effects 287 288 models (logistic regression), using the lme4 package in R, to determine if drinking_int (a 289 binomial response) was related to fixed effects of (1) maximum T_{air}, (2) time of day, (3) relative 290 abundance of the background community and (4) dietary guild (as described above), including 291 the interaction effect of (3) and (4). Species and waterholes (four sites) were included as a random factor to account for the probability of repeated samples of same species at a waterhole. 292 293 We selected family as "binomial" and used the "logit" link function. Maximum T_{air} , represented 294 the highest air temperature recorded on the day of observation at TKR. Time of day was 295 categorized as "morning" and "afternoon" for observations obtained before and after 1200 hours, 296 respectively. We realized that temporal drinking patterns may vary at a finer scale that this, but 297 we opted to reduce the number of levels per factor by testing whether birds drink before or 298 during the hottest period of the day. Abundance was calculated as a proportional vector of the 299 total number of point counts where a species was present n, over the total over the sum of n for 300 all species. Abundance values, when treated as a predictor, were logit-transformed for analyses.

We fitted a global model to all the above factors, and removed non-significant terms (computed from the Type II Wald chi-square test, using the "Anova" function, package car) in a step-wise manner. In addition, we also ran models on each dietary guild and species separately, using the same fixed (excluding "diet") and random terms; however, in individual species models we included "waterhole" only as a random factor. We computed Akaike Information Criteria (AIC)

306	values of all models ran and used AIC score to validate the top two remaining models (in most
307	cases the third model differed in AIC values >5), against a null model testing whether drinking is
308	independent of any of the factors tested.
309	Stable isotopes
310	A two-endpoint mixing model (Gannes et al. 1997) was used to estimate the proportion of an
311	individual's body water pool derived from an artificial water source enriched with δ^2 H. This
312	involved estimating the PEWL before enrichment, and then determining how δ^2 H versus δ^{18} O
313	values deviated from the expected values along the PEWL after enrichment. Artificially enriched
314	\mathscr{S} H levels in a water source will result in \mathscr{S} H ratios falling significantly away from the PEWL
315	(i.e. the baseline \mathscr{E}^{H} versus \mathscr{E}^{18} O relationship).
316	Estimation of the natural physiological water line
316 317	<i>Estimation of the natural physiological water line</i> We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched
316 317 318	<i>Estimation of the natural physiological water line</i> We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched.
316 317 318 319	<i>Estimation of the natural physiological water line</i> We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched. We broadly categorized the dietary guild of each species following Smit et al. (2016) using
316 317 318 319 320	Estimation of the natural physiological water line We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched. We broadly categorized the dietary guild of each species following Smit et al. (2016) using available literature (Hockey et al. 2005). The estimation of the PEWL has to exclude birds that
316 317 318 319 320 321	Estimation of the natural physiological water line We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched. We broadly categorized the dietary guild of each species following Smit et al. (2016) using available literature (Hockey et al. 2005). The estimation of the PEWL has to exclude birds that obtained water directly from precipitation as these values may follow the LMWL instead. We
316 317 318 319 320 321 322	Estimation of the natural physiological water line We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched. We broadly categorized the dietary guild of each species following Smit et al. (2016) using available literature (Hockey et al. 2005). The estimation of the PEWL has to exclude birds that obtained water directly from precipitation as these values may follow the LMWL instead. We first plotted δ^2 H and δ^{18} O of each sample, by dietary guild, and we then performed a chi-square
 316 317 318 319 320 321 322 323 	Estimation of the natural physiological water line We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched. We broadly categorized the dietary guild of each species following Smit et al. (2016) using available literature (Hockey et al. 2005). The estimation of the PEWL has to exclude birds that obtained water directly from precipitation as these values may follow the LMWL instead. We first plotted &H and δ ¹⁸ O of each sample, by dietary guild, and we then performed a chi-square distribution of fit for each guild. We established that all guilds showed &H and δ ¹⁸ O values that
 316 317 318 319 320 321 322 323 324 	Estimation of the natural physiological water line We obtained 69 blood samples (18 species) at distances of 0 and 2 km around two non-enriched waterholes at times when no waterholes were artificially enriched. We broadly categorized the dietary guild of each species following Smit et al. (2016) using available literature (Hockey et al. 2005). The estimation of the PEWL has to exclude birds that obtained water directly from precipitation as these values may follow the LMWL instead. We first plotted δ ² H and δ ¹⁸ O of each sample, by dietary guild, and we then performed a chi-square distribution of fit for each guild. We established that all guilds showed δ ² H and δ ¹⁸ O values that differed significantly from the LMWL (p<0.01) for the Kalahari region (Schachtschneider and

16

326 enrichment period, including dietary guild as a factor, to establish if guilds had a separate PEWL. 327 Although there was a significant difference in the PEWL of insectivores and granivores (see 328 results for details), both these were not significantly different from the remaining dietary guilds 329 and using separate PEWL lines did not change our findings on surface water dependency. We subsequently performed a linear regression by pooling $\delta^2 H$ and $\delta^{18} O$ values of all guilds during 330 331 the non-enrichment periods to estimate the PEWL; this line was described by the following function: $\delta^2 H = 3.73 \ \delta^{18}O + 10.0$, $r^2 = 0.77$. The slope of this equation falls within the expected 332 333 range of evaporative meteoric water lines (Kendall et al. 1995). We subsequently used residual 334 \mathcal{S} H values of samples obtained during the enriched period falling above of the 95 % prediction intervals of the respective baseline as evidence that individuals obtained water from the enriched 335 waterhole; these were significantly different from the expected $\delta^2 H$ and $\delta^{18}O$ relationship along 336 337 the PEWL.

For all individuals showing evidence of drinking from the enriched waterhole we determined the proportion of each individual's body water derived from that source (hereafter referred to as P%) using δ^2 H residuals from the PEWL predicted values for a given δ^{18} O value.

341 P% was calculated using the following equation,

342
$$P\% = [\delta^2 H_{bird} - \delta^2 H_{baseline}]/[\delta^2 H_{spike} - \delta^2 H_{baseline}]$$

343 where $\delta^2 H_{\text{spike}}$ is the $\delta^2 H$ value of the enriched water hole, $\delta^2 H_{\text{baseline}}$ is the expected $\delta^2 H$ value

of the sample based on the PEWL regression of δ^{18} O and δ^{2} H around the non-enriched source,

and \mathscr{E} H_{bird} represents the measured \mathscr{E} H value for the bird sample.

We used a general linear model to test and the relationship between observed drinking pattern and P%; we regressed P% values of individuals against the proportional vector of *drinking_int* for that species at the Donderkamp waterhole. Proportional values were logittransformed for analyses following Warton and Hui (2011). Data are available from figshare. https://doi.org/10.6084/m9.figshare.5313910.v1.

351 **RESULTS**

352 Weather during Study Periods

Mean daily maximum T_{air} on the 16 days for which we obtained video recordings was 32.1 °C, ranging from 26.4 °C to 37.4 °C (two days > 35 °C). Mean daily maximum T_{air} during the stable isotope study was 32.7 ± 2.7 °C (25–35 °C) during the wet season and 30.6 ± 4.2 °C (26–37 °C) during the dry season, respectively.

357

358 **Drinking Patterns**

359 *Observational data*

We recorded 69 species during the study (Supplementary material Table S1). The avian community at TKR was dominated by insectivores (49.3 % of species) and granivores (32.8%); birds of prey, omnivores, frugivores and nectarivores represented 10.4, 10.4, 9.0 and 1.5%,

18

363 respectively. We observed a total of 36 species drinking at the waterholes (Supplementary 364 material Table S1). The probability of observing birds drinking (*drinking_int*) was significantly related to maximum T_{air} (χ^2 =22.37, P < 0.001, positive relationship), dietary guild (χ^2 =13.22, P < 365 0.01; granivores showed a higher intercept), relative abundance in community (χ^2 =6.29, P < 366 0.05; positive relationship), and the interaction between dietary guild and abundance (χ^2 =9.28, 367 368 P < 0.05); granivores were observed in relation to their abundance); time was not significant (P > 0.05); 369 0.10). The above patterns largely remained when we analyzed dietary guilds separately. In 370 granivores, drinking was significantly related to maximum $T_{\rm air}$ (Fig. 1) and abundance (species 371 encountered more frequently were more likely to be observed drinking, Table 1, Fig. 2; summary 372 of competing models provided in supplementary material Table S2), but not time. Abundance 373 did not significantly predict drinking in the remaining dietary guilds (Table 1, Fig. 2), and 374 instead hotter maximum T_{air} (for omnivores and insectivores, Fig. 2) and time of day (greater 375 probability of afternoon drinking in all dietary guilds) significantly predicted drinking (Table 1). 376 When species were analyzed individually we found that while the majority of species did not 377 show temperature-dependent drinking, eight species drank significantly more on hot days, and 378 three species (two doves and sandgrouse) drank significantly more on cooler days 379 (Supplementary material Table S1).

380

381 Drinking inferred from isotopically labelled water sources

The δ^2 H and δ^{18} O values of the two non-enriched water sources were -47.2‰_{VSMOW} and -7.6 %_{VSMOW} respectively (large reservoir), and -24.0 ‰_{VSMOW} and -0.9 ‰_{VSMOW} respectively (small shallow waterhole). These values fell very close the local meteoric water line (LMWL) established by (Schachtschneider and February 2013) for the Kalahari region Figure 3A.

386	Although neither of the dietary guilds showed δ^2 H and δ^{18} O values that consistently matched the
387	LMWL, some individual granivore samples followed the LMWL closely (Figure 3A). There was
388	a significant difference in intercept and slope of δ^2 H and δ^{18} O values among the different dietary
389	guilds (Diet: F = 3.43, df = 3, $P < 0.05$; interaction of diet and δ^{18} O: F = 3.64, df = 3, $P < 0.05$). A
390	post hoc analysis revealed that granivores showed a significantly lower intercept and steeper
391	slope compared with insectivores (TukeyHSD, $P < 0.05$), although all remaining dietary guilds
392	did not differ significantly from granivores or insectivores ($P > 0.05$). The \mathcal{S}^2 H vs. \mathcal{S}^{18} O gradient
393	is determined by the kinetics of water precipitation and evaporation (Brooks et al. 2009), and
394	there appeared to be a continuum in the primary water source of the different dietery guild's;
395	granivores were closest to the LMWL, while the other guilds were progressively more indicative
396	of evaporated water (linked to a trophic cascade of water). Insectivores, frugivores and
397	omnivores had higher δ^{18} O values (mean of 13.2, 12.9 and 11.0‰ _{VSMOW} , respectively) compared
398	with granivores (6.9 ‰ _{VSMOW}), representing one/two water trophic intermediaries (vegetation
399	and insects) in the former guilds (Figure 3B). These results on δ^{18} O values were evident even
400	during the non-enrichment period.

401 Of the 247 individuals (35 species) for which we obtained isotope samples during the 402 enrichment periods, 39 individuals (11 species) showed evidence of the enriched water source in 403 their body water pools, by having δ^2 H and δ^{18} O values that fell above the 95% predictive 404 interval of the PEWL (Supplementary material Table S1). The δ^2 H and δ^{18} O ratios for all

405 insectivores (including a few carnivores) and frugivores fell within the 95% prediction intervals 406 of the PEWL, which we interpret as evidence that these species did not use the labelled water 407 source (Figure 3B). Some granivore and, to a lesser extent omnivore, samples represented the 408 only guilds where δ^2 H and δ^{18} O values fell above the LMWL, indicating use of the enriched

409 water source (Figure 3B).

The number of individuals showing enriched body water pools (both total and proportion 410 411 of trapped) were highest near the waterhole, and low at distances more than 500 m from the 412 enriched waterhole (Fig. 4A). The samples sizes of P% estimates away from the waterhole (> 413 500m) were too small to conduct rigorous statistical analyses, but nevertheless there appeared to 414 be no strong trends with increasing distance from waterhole (Fig. 4B). Two of the most 415 commonly trapped species, Namaqua Doves (Oena capensis) and Violet-eared Waxbills 416 (Uraeginthus granatinus), showed enriched P% values at most trapping sites, up to 2 km away 417 from the enriched waterhole (Figure 4C-D). Although a number of samples were obtained from 418 insectivores within 100-1000 m of the waterhole, none of these individuals used the waterhole 419 (Table 2).

We found a significant effect of proportion of drinking for each species at Donderkamp and the P% values obtained in birds trapped when the waterhole was enriched ($F_{1,35} = 8.07$, P < 0.01, $r^2 = 0.19$). Restricting this analyses to granivores only, improved the fit substantially ($F_{1.28} = 16.72$, P < 0.001, $r^2 = 0.37$; Figure 5).

425 **DISCUSSION**

426 Our data, obtained using two complementary approaches, revealed that many species at our 427 study site were largely independent of drinking freestanding water. Whereas our observations of 428 avian drinking patterns provided ecologically relevant insights into drinking behavior (such as 429 timing of drinking and temperature-dependence of drinking events), our stable isotope approach 430 provided quantitative estimates of the importance of surface water for the water balance of birds 431 in the surrounding area. Both techniques revealed that avian granivores are most dependent on 432 surface water-with drinking frequency reflecting their relative abundance in the Kalahari 433 community, and in many cases more that 30% or more of their body water pools were derived 434 from the enriched source. In contrast, insectivores and most omnivores were largely independent 435 of surface water as was evident from the stable isotope values of their body water and our 436 observations that they were less frequently observed making use of surface water relative to their 437 abundance estimates. Drinking probability increased on hot days for most birds when analyzed at 438 guild level, but these patterns were most evident in insectivores. Only three species, all daily 439 drinkers, used the waterhole less on hot days, suggesting that trips to waterholes became costly 440 in terms of heat and water balance on the hottest days. These data corroborate previous findings 441 based on observational data that relatively few species inhabiting the arid regions of Africa and 442 Australia are dependent on drinking water (Willoughby and Cade 1967, Fisher et al. 1972).

Both of the approaches we used here revealed that granivores represent the guild with the greatest dependence on surface water. One advantage of the isotopic method over that of observations is that surface water dependence could be estimated without knowledge of the relative abundance of individual species in the surrounding avian community. Our drinking dependence estimates for individual species relied heavily on the assumption that we obtained an

accurate estimate of the relative abundance of the avian community at TKR (Lee et al. 2017,
Abdu et al. 2018). We believe this assumption will hold largely for resident bird species at TKR,
but many species are visitors to the Kalahari region and their number may have fluctuated during
our observation periods.

452 Natural variation in stable isotope ratios in the tissues of plants and animals has been widely employed to quantify the importance of a given resource at a landscape scale. For 453 454 example, this technique has been used to show dependence of White-winged Doves (Zenaida 455 asiatica) on saguaro fruit as a water source during summer in the Sonoran Desert (Wolf and 456 Martinez del Rio 2000). Moreover, this method has also revealed how White-winged Doves 457 obtain both water and nutrients from these fruits, whereas Mourning doves (Zenaida macroura) 458 obtain mainly nutrients, but not water (Wolf et al. 2002). We are aware of only one previous 459 study (Hyde 2011) using the technique of artificially enriching a water source to investigate 460 drinking dependency in an avian community.

461 A few individuals of some granivorous species in our study, including Namaqua Doves 462 (*Oena capensis*), Laughing Doves (*Spilopelia senegalensis*) and Yellow Canaries (*Crithagra* 463 *flaviventris*), did not drink from the enriched waterhole based on their δ^2 H values (Figure 3A).

However, these individuals typically had δ^2 H and δ^{18} O values closer to that of the non-enriched water-holes, suggesting they may have drank from other non-enriched water sources at TKR. The relatively depleted δ^{18} O values, in particular, suggest they were not taking in water from other trophic levels, as was the case in insectivores, frugivores and omnivores. Our isotopic assessment of the importance of surface water resources to the bird community was based on enrichment of a single waterhole. Therefore, we may have underestimated surface water

470 dependency, as some of the regular drinking species almost certainly visited more than one 471 waterhole thus diluting the label from our enriched source. Enriching more than one waterhole 472 with \mathscr{S}^2 H was not feasible in our study, because one of our aims were to establish how far 473 individual birds would travel to the enriched source, and replicating the trapping and blood 474 sampling of birds around more waterholes, simultaneously, was not logistically feasible.

Within the species where we found individuals with enriched isotope levels in their body water we found that the drinking frequency was significantly related to enrichment level. This pattern was largely driven by a few granivore species. The low P% values or absence of enriched isotope values in some omnivores and frugivores that have been observed to drink—both in the present study (e.g. mousebirds and some weavers) and previous studies (Willoughby and Cade 1967, Abdu et al. 2018), may be perhaps explained by drinking only on the hotter days, and relying largely on the abundant preformed water obtained from insects and fruits.

482 Insectivores were greatly under-represented at waterholes, despite this group being speciose in the avian community at TKR (Martin et al. 2015, Smit et al. 2016, Abdu et al. 2018). 483 484 A few insectivore species, such as Ant-eating Chat, Myrmecocichla formicivora, and Common 485 Fiscal, Lanius collaris, drank occasionally on hot days, yet their blood isotope values suggested that surface water did not contribute significantly to their water budget, even for those 486 487 individuals trapped near the labeled water hole. Focal studies on individual birds will be required 488 to test if free-standing water will become a greater component of their daily water budget when EWL exceeds preformed water intake under hotter conditions (Smit and McKechnie 2015). 489

490

491 Ecological Implications of Drinking

24

492 Previous studies in semi-arid and arid ecosystems of North America, using behavioral 493 observations, have suggested a greater reliance on surface water sources by avifauna (Gubanich 494 1966, Williams and Koenig 1980, Lynn et al. 2008) compared with studies in southern Africa's 495 Kalahari and Namib Deserts and Fynbos biome (present study; Willoughby and Cade 1967, Lee 496 et al. 2017, Abdu et al. 2018). Drinking patterns in the Australian arid zone (Fisher et al. 1972) 497 also suggest that comparatively few species (mostly granivores) make regular use of permanent 498 freestanding water. These intriguing patterns suggest that African and Australian avifauna have 499 been under greater selection to become independent of drinking water.

500 Spatial patterns in the use of surface water sources are of particular interest as these could 501 structure animal communities when water sources are isolated in the landscape. Our isotopic 502 labelling approach revealed that some granivores travelled in excess of 2 km to the enriched 503 source, and that between 35 and 91% of their body water pools were derived from the 504 experimentally enriched water hole. Small, granivorous species (e.g. Violet-eared Waxbill) were 505 likely to be most strongly tied to water availability, and likely face strong trade-offs between 506 elevated rates of EWL versus water gain when flying to water sources during hot weather. Future 507 research could determine if an increase in the density of water points have a positive effect on 508 water balance of small drinking dependent species, as well as species that rely more on water 509 during hot weather.

510

511 Conclusions

512 Our study illustrates how two methods can be used to obtain complementary data on surface 513 water dependency in a desert bird community. Information on the importance of surface water as 514 a daily requirement, or as a limiting resource on hot days, will be important for developing water

25

515 and energy balance models and time-activity budget models for specific species. For example, 516 knowledge of whether species need to obtain their water through their food and by foraging, 517 from metabolic water, or from drinking, will be important in understanding how much time and 518 energy an individual need to spend to avoid dehydration on hot days. Our stable isotope analyses 519 of the body water pools corroborate in a novel manner previous findings that desert birds taking 520 in water-rich food rely less on surface water compared to species taking in food with lower water 521 content. Our findings that the probability of drinking increases on hot days echo predictions that 522 more species will rely on surface water, particularly artificial sources under future climate 523 warming scenarios (McKechnie et al. 2012). Providing artificial water has been a contentious 524 and highly debated issue, particularly when larger mammals degrade habitat around waterhole 525 (Hayward and Hayward 2012, Landman et al. 2012). With these landscape-level changes we 526 might expect increasing conflicts between provisioning of free-standing water to meet increasing 527 evaporative cooling demands, and habitat protection where ecosystem function and microclimate 528 availability are key objectives in semi-arid/ arid environments. Water provisioning as a global 529 change conservation effort needs to be carefully evaluated and implemented.

530 ACKNOWLEDGEMENTS

We thank E Oppenheimer and Son, and the staff at Tswalu Kalahari Reserve. We are grateful to
the Tswalu Foundation for sponsoring a field vehicle and accommodation at TKR. We are
further grateful to O. Davies, C. Harding, R. Martin, S. Cunningham, R. Sutcliff, D. Nkosi, L.
Barclay and M. Whitfield for their help in the field, and R. Lerm and P.J. Jacobs for help in the
laboratory. All experimental procedures were approved by the University of Pretoria's Animal
Use and Care Committee (clearance #EC058-09).

26

- **Funding statement:** This research was supported by funding from National Research
- 538 Foundation and the DST/NRF Centre of Excellence at the Percy FitzPatrick Institute to AEM.
- 539 SW was employed by iThemba LABS, Johannesburg, during preparation of the manuscript.
- 540 Author contributions: BS, AEM, BOW conceived the study; BS performed the experiments,
- 541 wrote the manuscript and analyzed the data; SW, AEM and BOW edited earlier drafts of the
- 542 manuscript; AEM contribute resources and funding.
- 543 **Data deposits:** Data are deposited with figshare, and can be accessed at:
- 544 https://doi.org/10.6084/m9.figshare.5313910.v1

545 LITERATURE CITED

- 546 Abdu, S., A. E. McKechnie, A. T. K. Lee, and S. J. Cunningham (2018). Can providing shade at
- 547 water points help Kalahari birds beat the heat? Journal of Arid Environments 152:21–27.
- 548 Aulie, A. (1971). Body temperature in pigeons and budgerigars during sustained flight.
- 549 Comparative Biochemistry and Physiology A 39:173–176.
- 550 Bartholomew, G. A., and T. J. Cade (1963). The water economy of land birds. Auk 80:504–539.
- 551 Berry, H. H., V. E. Fox, and P. E. Berry (2001). Synchrony of drinking in Double-banded
- 552 Sandgrouse, *Pterocles bicinctus*, at Etosha National Park, Namibia. Ostrich 72:109–113.
- 553 Brien, C. S. O., R. B. Waddel, S. S. Rosenstock, and M. J. Rabe (2006). Wildlife use of water
- 554 catchments in south-western Arizona. Wildlife Society Bulletin 34:582–591.
- 555 Brooks, R., H. R. Barnard, R. Coulombe, and J. J. McDonnell (2009). Ecohydrologic separation of
- 556 water between trees and streams in a Mediterranean climate. Nature Geoscience 3:100–
- 557 104.
- 558 Broyles, B. (1995). Desert wildlife water developments: questioning use in the Southwest.

- 559 Wildlife Society Bulletin 23:663–675.
- 560 Cade, T. J. (1965). Relations between raptors and columbiform bird at a desert water hole. The
 561 Wilson Bulletin 77:340–345.
- 562 Cade, T. J., and G. L. Maclean (1967). Transport of water by adult sandgrouse to their young.
- 563 Condor 69:323–343.
- 564 Craig, H. (1961). Isotopic variations in meteoric waters. Science 133:1702–1703.
- 565 Dean, W. R. J., and I. A. W. Macdonald (1994). Historical changes in stocking rates of domestic
- 566 livestock as a measure of semi-arid and arid rangeland degradation in the Cape Province,
- 567 South Africa. Journal of Arid Environments 26:281–298.
- 568 Engel, S., H. Biebach, and G. H. Visser (2006a). Metabolic costs of avian flight in relation to flight
- 569 velocity: a study in Rose Coloured Starlings (*Sturnus roseus*, Linnaeus). Journal of
- 570 Comparative Physiology B 176:415–427.
- 571 Engel, S., H. Biebach, and G. H. Visser (2006b). Water and heat balance during flight in the rose-
- 572 colored starling (*Sturnus roseus*). Physiological and Biochemical Zoology 79:763–774.
- 573 Fisher, C. D., E. Lindgren, and W. R. Dawson (1972). Drinking patterns and behavior of
- 574 Australian desert birds in relation to their ecology and abundance. Condor 74:111–136.
- 575 Gannes, L. Z., D. M. O'Brien, and C. Martinez del Rio (1997). Stable isotopes in animal ecology:
- 576 assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271–1276.
- 577 Gibson, J. J., S. J. Birks, and T. W. D. Edwards (2008), Global prediction of δ_A and $\delta^2 H \delta^{18} O$
- 578 evaporation slopes for lakes and soil water accounting for seasonality. Global
- 579 Biogeochemical Cycles, 22, GB2031, doi:10.1029/2007GB002997.
- 580 Gubanich, A. A. (1966). Avian utilization of desert waterholes. MSc Thesis, University of Arizona,

28

581 Tucson.

- Hayward, M. W., and M. D. Hayward (2012). Waterhole use by African Fauna. South African
 Journal of Wildlife Research 42:117–127. doi: 10.3957/056.042.0209
- 584 Hill, R. W., G. A. Wyse, and A. Anderson (2004). Animal Physiology. In. Sinauer Associates,
- 585 Sunderland, MA.
- Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: a review.
 Oecologia 120:314–326.
- 588 Hockey, P. A. R., W. R. J. Dean, and P. G. Ryan (2005). Roberts birds of southern Africa. In. 7th
- 589 edition. John Voelcker Bird Book Fund, Cape Town.
- 590 Hudson, D. M., and M. H. Bernstein (1981). Temperature regulation and heat balance in flying
- 591 white-necked ravens, *Corvus cryptoleucus*. Journal of Experimental Biology 90:267–281.
- 592 Hyde, T. (2011). Stable isotopes provide insight into the use of wildlife water developments by
- resident and migrant birds in the Sonoran Desert of Arizona. MSc Thesis, University of New
 Mexico, Albuquerque.
- - Jeltsch, F., S. J. Milton, W. R. J. Dean, and N. van Rooyen (1997). Simulated pattern formation
- around artificial waterholes in the semi-arid Kalahari. Journal of Vegetation Science 8:177–
 188.
- Kearney, M. R., W. P. Porter, and S. A. Murphy (2016). An estimate of the water budget for the
 endangered night parrot of Australia under recent and future climates. Climate Change
 Responses 3:14.
- 601 Kendall, C., M. G. Sklash, and T. D. Bullen (1995). Isotope tracers of water and solute sources in
- 602 catchments. In Solute modelling in catchment systems (S. T. Trudgill, Editor). John Wiley &

603	Sons, Ltd, New York, pp. 261–303.
-----	-----------------------------------

- Landman, M., D. S. Schoeman, A. J. Hall-Martin, and G. I. H. Kerley (2012). Understanding Long-
- 605 Term Variations in an Elephant Piosphere Effect to Manage Impacts. PLoS ONE 7:e45334.
- Lee, A. T. K., D. Wright, and P. Barnard (2017). Hot bird drinking patterns: drivers of water
- 607 visitation in a fynbos bird community. African Journal of Ecology 55(4):541–553.
- Lynn, J. C., C. L. Chambers, and S. S. Rosenstock (2006). Use of wildlife water developments by
- birds in southwest Arizona during migration. Wildlife Society Bulletin 34:592–601.
- 610 Lynn, J. C., S. S. Rosenstock, and C. L. Chambers (2008). Avian use of desert wildlife water
- 611 developements as determined by remote videography. Western North American Naturalist612 68:107–112.
- 613 Maclean, G.L. (1996) Ecophysiology of Desert Birds. Springer-Verlag, Berlin.
- 614 MacMillen, R. E. (1990). Water economy of granivorous birds: a predictive model. Condor
- 615 92:379–392.
- 616 MacMillen, R. E., and R. V Baudinette (1993). Water economy of granivorous birds: Australian
- 617 parrots. Functional Ecology 7:704–712.
- 618 Martin, R. O., S. J. Cunningham, and P. A. R. Hockey (2015). Elevated temperatures drive fine-
- scale pattern of habittat use in a savanna bird community. Ostrich 86:127–135.
- 620 McCluney, K. E., and J. L. Sabo (2010). Tracing water sources of terrestrial animal populations
- 621 with stable isotopes: laboratory tests with crickets and spiders. PLoS ONE 5:e15696.
- 622 McKechnie, A. E. (2004). Stable isotopes: powerful new tools for animal ecologists. South
- 623 African Journal of Science 100:131–134.
- 624 McKechnie, A. E., P. A. R. Hockey, and B. O. Wolf (2012). Feeling the heat: Australian landbirds

- 625 and climate change. Emu 112:i–vii.
- 626 McKechnie, A. E., B. O. Wolf, and C. Martinez del Rio (2004). Deuterium stable isotope ratios as
- 627 tracers of water resource use: an experimental test with rock doves. Oecologia 140:191–
- 628 200.
- du Plessis, K. L., R. O. Martin, P. A. R. Hockey, S. J. Cunningham, and A. R. Ridley (2012). The
- 630 costs of keeping cool in a warming world: implications of high temperatures for foraging,
- 631 thermoregulation and body condition of an arid-zone bird. Global Change Biology
- 632 18:3063–3070.
- 633 Reynolds, R. T., J. M. Scott, and R. A. Nussbaum (1980). A variable circular-plot method for
- estimating bird numbers. Condor 82:309–313.
- Rosenstock, S. S., W. B. Ballard, and J. C. Devos (1999). Viewpoint: Benefits and Impacts of
 Wildlife Water Developments. Journal of Range Management 52:302.
- 637 Schachtschneider, K., and E. C. February (2013). Impact of *Prosopis* invasion on a keystone tree
- 638 species in the Kalahari Desert. Plant Ecology 214:597–605.
- 639 Serventy, D.L. (1971). Biology of desert birds. In. Avian Biology, vol. I (eds D.S. Farner and J.R.
- 640 King), pp.287-339. Academic Press, NY.
- 641 Simmons, R. E., D. G. Allan, and W. R. J. Dean (2002). The Orange River avifauna: abundance,
- richness and comparisons. Ostrich 73:92–99.
- 643 Simpson, N. O., M. S. Kelly, and V. C. Bleich (2011). What have we learned about water
- 644 developements for wildlife? Not enough! California Fish and Game 97:190–209.
- 645 Smit, B., and A. E. McKechnie (2015). Water and energy fluxes during summer in an arid-zone
- 646 passerine bird. Ibis 57:774–786.

647	Smit, B., G. Zietsman, R. O. Martin, S. J. Cunningham, A. E. McKechnie, and P. A. R. Hockey			
648	(2016). Behavioural responses to heat in desert birds: implications for predicting			
649	vulnerability to climate warming. Climate Change Responses 3:9.			
650	Smyth, M., and H. N. Coulombe (1971). Notes on the use of desert springs by birds in California.			
651	Condor 73:240–243.			
652	Speakman, J. R. (1997). Doubly labelled water: theory and practice. Chapman & Hall, New York.			
653	Torre-Bueno, J. R. (1978). Evaporative cooling and water balance during flight in birds. Journal			
654	of Experimental Biology 75:231–236.			
655	Tucker, V. A. (1968). Respiratory exchange and evaporative water loss in the flying budgerigar.			
656	Journal of Experimental Biology 48:67–87.			
657	Turner, J. V (1987). The mechanisms of catchment flow processes using natural variations in			
658	deuterium and oxygen-18. Journal of Hydrology 94:143–162.			
659	Tyler, C. (2011). Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. Eos,			
660	Transactions American Geophysical Union 63:861–862.			
661	van de Ven, T. M. F. N. (2017). Implications of climate change on the reproductive success of			
662	the Southern Yellow-billed Hornbill, Tockus leucomelas. PhD Thesis, University of Cape			
663	Town, Cape Town.			
664	Warton, D. I., and F. K. C. Hui (2011). The arcsine is asinine: the analysis of proportions in			
665	ecology. Ecology 92:3–10.			
666	Webster, M. D., and W. W. Weathers (2000). Seasonal changes in energy and water use by			
667	verdins, Auriparus flaviceps. Journal of Experimental Biology 203:3333–3344.			
668	Williams, J. B. (1999). Heat production and evaporative water loss of dune larks from the Namib			

669	desert. Condor 101:432–438.
670	Williams, J. B. (2001). Energy expenditure and water flux of free-living dune larks in the Namib:
671	a test of the reallocation hypothesis on a desert bird. Functional Ecology 15:175–185.
672	Williams, J. B., and B. I. Tieleman (2005). Physiological adaptation in desert birds. BioScience
673	55:416–425.
674	Williams, P. L., and W. D. Koenig (1980). Water dependence of birds in a temperate oak
675	woodland. The Auk 97:339–350.
676	Willoughby, E. S., and C. J. Cade (1967). Drinking habits of birds in the central Namib Desert of
677	South West Africa. Scientific Papers of the Namib Desert Research Station 31:1–35.
678	Wolf, B. O. (2000). Global warming and avian occupancy of hot deserts: a physiological and
679	behavioral perspective. Revista Chilena de Historia Natural 73:395–400.
680	Wolf, B. O., and K. A. Hatch (2011). Aloe nectar, birds and stable isotopes: opportunities for
681	quantifying trophic interactions. Ibis 153:1–3.
682	Wolf, B. O., and C. Martinez del Rio (2000). Use of saguaro fruit by white-winged doves: isotopic
683	evidence of a tight ecological association. Oecologia 124:536–543.
684	Wolf, B. O., and C. Martinez del Rio (2003). How important are columnar cacti as sources of
685	water and nutrients for desert consumers? A review. Isotopes in Environmental and Health
686	Studies 39:53–67.
687	Wolf, B. O., C. Martinez del Rio, and J. Babson (2002). Stable isotopes reveal that saguaro fruit
688	provides different resources to two desert dove species. Ecology 83:1286–1293.
689	
690	

691

692 **FIGURE CAPTIONS**:

693 Figure 1: Drinking behavior (*drinking int*) representing presence/absence of drinking during 694 focal periods as a function of maximum air temperature recorded on the day of observations in 695 (A) granivores, (B) omnivores, (C) insectivores, and (D) frugivores at Tswalu Kalahari Reserve 696 during the summer (November to December 2009). The size of circles represent the number of 697 observations at the different temperatures. The logistic regression represents the predicted proportion of drinking as determined by the outcome of mixed-effects models (Table 1); solid 698 699 trendlines indicate significant regressions (p < 0.05) and dashed lines indicate regressions 700 approaching significance (p < 0.1). The trend line for granivores was omitted for clarity as it 701 approached the upper boundary of the predicted response across the air temperature range 702 (granivores were observed drinking every day).

703

704 Figure 2: Drinking behavior (*drinking int*, calculated as a proportional vector of the number 705 instances where drinking behavior was observed) at the Donderkamp waterhole, Tswalu Kalahari 706 Reserve, as a function of proportional abundance (calculated as a proportional vector of number 707 of instances a species was observed during focals) of the species recorded in the reserve. 708 Proportional values are logit transformed. The dotted line indicates the null model if drinking behavior is directly proportional to relative abundance. Carnivores (about three bird of prey 709 710 species) were lumped with insectivores for simplicity. Granivores were the only guilds to drink 711 in proportion to their abundance (see text and Table 1 for detailed statistics). The only granivore 712 species that did not drink in proportion to its abundance was Scaly-feathered Finch (Sporopipes 713 squamifrons, SFF), despite being one of the most frequently encountered species in the reserve.

34

Acronyms are defined as: GRA for granivore; FRU for frugivore; INS for insectivore; and OMNfor omnivore.

716

Figure 3: A) δ^2 H and δ^{18} O values of birds sampled around two non-enriched water sources in 717 Tswalu Kalahari Reserve. B) δ^2 H as a function of δ^{18} O of birds sampled within 2km of an 718 719 enriched waterhole, Donderkamp, in Tswalu Kalahari Reserve (during February and October 720 2011). In both panels, the blue dashed line represent the local meteoric water line (LMWL) 721 established by Schachtschneider and February (2013) for the Kalahari region. In both panels, the solid trendlines represent a linear regression model ($\delta^2 H = 3.73 * \delta^{18} O + 10.0$, $r^2 = 0.77$) fitted to 722 \mathcal{S} H as a function of \mathcal{S}^{18} O from the samples obtained during the non-enrichment period with 95 723 724 % confidence (CI) and prediction intervals (PI) indicated by dashed and dotted bands along the 725 regression, respectively. Data points falling above the upper 95 % prediction interval indicate that individuals used the enriched waterhole. The blue circles represent mean δ^{18} O and δ^{2} H 726 727 values for the non-enriched waterholes, whereas patterned blue circles represent the mean 728 enriched water samples during the two enrichment periods. Acronyms are defined as: GRA for 729 granivore; FRU for frugivore; INS for insectivore; and OMN for omnivore; non-E WH for nonenriched waterhole; and E WH for enriched waterhole. 730 731

Figure 4: Spatial reliance of surface water as estimated through enriched δ²H values in blood
samples of birds trapped at increasing distances from an enriched waterhole at Tswalu Kalahari

734

735

736

737

738

739

740

741

742

743

35

Reserve (data were pooled for both sample seasons). (A) The number of individuals showing enriched \mathscr{E} H values and total number of individuals from which blood samples were obtained. (B) Boxplots showing median (solid line) and mean (dotted line) percentage of bird's body water pools derived from the enriched water source. Boxplots showing median percentage of bird's body water pools derived from the enriched water source for two species, Violet-eared Waxbill, *Uraeginthus granatinus* (C), and Namaqua Dove, *Oena capensis* (D), that showed highest number of individuals with enriched \mathscr{E} H values in blood, at sites within 1 km, and more that 1 km from the enriched waterhole. Sample sizes of distance categories are indicated above each box-plot.

Figure 5: Proportion of body water pool derived (P%) from the enriched waterhole increased significantly as a function drinking behavior (*drinking_int*, calculated as a proportional vector of the number instances where drinking behavior was observed) at Tswalu Kalahari Reserve. Proportional values were logit transformed following Warton and Hui (2011). The trendline shows the significant relationship in granivore dietary guild only, with 95 % confidence (CI) and prediction intervals (PI) indicated by dashed and dotted bands along the regression, respectively. See text for detailed statistics.

751

752

753 SUPPLEMENTARY MATERIAL

754 Additional results, including Table S1-2.

756			
757			
758			
759			
760			

761

762 TABLES:

- 763 Table 1: Top performing models (based on Akaike Information Criteria; see methods for details)
- of *drinking_int*, which describes the probability of observing birds drinking, in four dietary
- 765 guilds at Tswalu Kalahari Reserve, South Africa.

Granivores	<pre>Drinking_int = maximum Tair* + log (abundance)**</pre>
Omnivores	<i>Drinking_int</i> = maximum <i>T</i> _{air} ** + Time**
Frugivores	<i>Drinking_int</i> = maximum <i>T</i> _{air} · + Time** + log(abundance)
Insectivores	<i>Drinking_int</i> = maximum <i>T</i> _{air} ** + Time*+ log(abundance) [.]

766 [•] p<0.1; *p<0.05; **p<0.01

767 Table 2: Mean % body water pool (P% \pm SD) derived from the enriched source at different 768 distances from the sources in species that drank frequently and in a number of species not

769 observed to drink.

	Distance to enriched waterhole (km)	
Species	<1.0	>1.0
Namaqua Dove Oena capensis	(9/10)	(2/3)
Violet-eared Waxbill Uraeginthus granatinus	(6/7)	(3/5)
Sociable Weaver Philetairus socius	(5/18)	(2/18)
Southern Masked-Weaver Ploceus velatus	(1/6)	(0/3)
Scaly-feathered Finch Sporopipes squamifrons	(6/30)	(2/18)
White-browed Sparrow-Weaver Plocepasser mahali	(2/11)	(0/14)
Yellow Canary Crithagra flaviventris	(1/4)	
Fawn-coloured Lark Calendulauda africanoides	(0/8)	(0/3)
Black-chested Prinia Prinia flavicans	(0/14)	(0/7)
Common Fiscal Lanius collaris	(0/4)	(0/2)
Marico Flycatcher Bradornis mariquensis	(0/4)	(0/1)
Acacia Pied Barbet Tricholaema leucomelas	(0/2)	(0/2)
Chestnut-vented Tit-Babbler Parisoma subcaeruleum	(0/5)	(0/3)
White-backed Mousebird Colius colius	(0/7)	(0/1)

Figure 1

Peer Preprints

778 779

Peer Preprints

Figure 3

786 Figure 6 787